This guide provides useful resources for a wide variety of math topics. It is targeted at students enrolled in a math course or any other Centennial course that requires math knowledge and skills.

- Welcome
- Learning Math Strategies (Online)Toggle Dropdown
- Study Skills for MathToggle Dropdown
- Simply Math
- Business Math
- How to use a scientific calculator
- Place Value in Decimal Number Systems
- Arithmetic Operations
- Basic Laws
- Operations on Signed numbers
- Order of Operations
- Fractions
- Decimals
- Percents
- Ratios and Proportions
- Exponents
- Statistics
- Factoring
- Rearranging Formulas
- Solving Linear Equations
- Solving Systems of Linear Equations
- Trade and Cash Discounts
- Multiple Rates of Discount
- Payment Terms and Cash Discounts
- Markup
- Markdown
- Simple Interest
- Compound Interest
- Equivalent Values in Compound Interest
- Nominal and Effective Interest Rates
- Ordinary Simple Annuities
- Ordinary General Annuities

- Hospitality MathToggle Dropdown
- Place Value in Decimal Number Systems
- Arithmetic Operations
- Order of Operations
- Basic Laws
- Prime Factorisation and Least Common Multiple
- Fractions
- Decimals
- Percents
- Exponents
- Units of Measures
- Fluid Ounces and Ounces
- Metric Measures
- Yield Percent
- Recipe Size Conversion
- Ingredient Ratios
- Food-Service Industry Costs

- Engineering MathToggle Dropdown
- Basic Laws
- Order of Operations
- Prime Factorisation and Least Common Multiple
- Fractions
- Exponents
- Radicals
- Reducing Radicals
- Factoring
- Rearranging Formulas
- Solving Linear Equations
- Areas and Volumes of Figures
- Congruence and Similarity
- Functions
- Domain and Range of Functions
- Basics of Graphing
- Transformations
- Graphing Linear Functions
- Graphing Quadratic Functions
- Solving Systems of Linear Equations
- Solving Quadratic Equations
- Solving Higher Degree Equations
- Trigonometry
- Graphing Trigonometric Functions
- Graphing Circles and Ellipses
- Exponential and Logarithmic Functions
- Complex Numbers
- Number Bases in Computer Arithmetic
- Linear Algebra
- Calculus
- Set Theory
- Modular Numbers and Cryptography
- Statistics
- Problem Solving Strategies

- Upgrading / Pre-HealthToggle Dropdown
- Basic Laws
- Place Value in Decimal Number Systems
- Decimals
- Significant Digits
- Prime Factorisation and Least Common Multiple
- Fractions
- Percents
- Ratios and Proportions
- Exponents
- Radicals
- Reducing Radicals
- Metric Conversions
- Factoring
- Solving Linear Equations
- Solving Quadratic Equations
- Functions
- Domain and Range of Functions
- Polynomial Long Division
- Exponential and Logarithmic Functions
- Statistics

- Nursing MathToggle Dropdown
- Arithmetic Operations
- Order of Operations
- Place Value in Decimal Number Systems
- Decimals
- Fractions
- Percents
- Ratios and Proportions
- Nutrition Labels
- Interpreting Drug Orders
- Oral Dosages
- Dosage Based on Size of the Patient
- Parenteral Dosages
- Intravenous (IV) Administration
- Infusion Rates for Intravenous Piggyback (IVPB) Bag
- General Dosage Rounding Rules

- Transportation MathToggle Dropdown
- PhysicsToggle Dropdown
- Architectural MathToggle Dropdown

**Nominal interest rate** is the annual interest rate (per year) for a certain compounding period. Nominal interest rate can be applied to the advertised or stated interest rate on a loan, without taking into account any fees or compounding of interest. The nominal interest rate can be calculated using the formula:

\(j=im\),

where:

- \(i\) is the periodic interest rate
- \(j\) is the nominal/stated rate
- \(m\) is the number of compounding periods

The** effective interest rate (f)**, (or simply **effective rate**) is the annual interest rate compounded annually. It may be seen on a loan or financial product restated from the nominal interest rate and expressed as the equivalent interest rate if compound interest was payable annually in arrears. It can be calculated with the following formula:

\(f=(1+i)^m−1\),

where:

- \(i\) is the periodic interest rate
- \(f\) is the effective rate
- \(m\) is the number of compounding periods

`Example 1`

What is the nominal rate of interest on a company that has a 7.77% rate of effective interest annually (rounded to two decimal places)?

`Solution`

Since we're looking for the nominal rate of interest, we are determining \(j\). First, we can identify the information that is given in the problem:

\(m = 12\) (months per year), \(i=7.77\%=0.0777\)

We can use the effective interest rate formula, \(i=(1+\frac{j}{m})^m-1\), substitute the above values and solve for \(r\):

\(0.0777=(1+\frac{j}{12})^{12}-1\)

\(0.0777+1=(1+\frac{j}{12})^{12}\)

\(\sqrt[12]{1.0777}-1=\frac{j}{12}\)

\(j=12(\sqrt[12]{1.0777}-1) \approx 0.0751\)

So, the nominal rate of interest on a company that has a 7.77% effective rate (compounded annually per year) is \(7.51\%\) compounded monthly per year.

`Example 2`

A credit card company charges 21% interest per year, compounded monthly. What effective annual interest rate (to two decimal places) does the company charge?

`Solution`

Since we're looking for the effective rate, we are determining \(f\). First, we can identify the information that is given in the problem:

\(m = 12\) (months per year), \(j=21\%=0.21\)

We can use the effective interest rate formula, \(i=(1+i)^m-1\), substitute the above values and solve for \(f\):

\(f=(1+\frac{0.21}{12})^{12}-1\)

\(f=(1+0.0175)^{12}-1\)

\(f \approx 0.2314\)

So, effective rate the company charges is \(23.14\%\) compounded annually per year.

- Last Updated: Oct 2, 2024 4:11 PM
- URL: https://libraryguides.centennialcollege.ca/mathhelp
- Print Page

chat loading...