It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

This guide provides useful resources for a wide variety of math topics. It is targeted at students enrolled in a math course or any other Centennial course that requires math knowledge and skills.

- Welcome
- Learning Math Strategies (Online)Toggle Dropdown
- Study Skills for MathToggle Dropdown
- Business MathToggle Dropdown
- Place Value in Decimal Number Systems
- Arithmetic Operations
- Basic Laws
- Operations on Signed numbers
- Order of Operations
- Some Useful Basic Numeracy
- Decimals
- Fractions
- Percents
- Ratios and Proportions
- Exponents
- Statistics
- Trade and Cash Discounts
- Multiple Rates of Discount
- Payment Terms and Cash Discounts
- Markup
- Markdown
- Simple Interest
- Equivalent Values
- Compound Interest
- Equivalent Values in Compound Interest
- Nominal and Effective Interest Rates
- Annuities

- Hospitality MathToggle Dropdown
- Engineering Math
- Basic Laws
- Operations with Numbers
- Prime Factorisation and Least Common Multiple
- Fractions
- Exponents
- Reducing Radicals
- Factoring
- Rearranging Formulas
- Solving Linear Equations
- Areas and Volumes of Figures
- Congruence and Similarity
- Functions
- Domain and Range of Functions
- Basics of Graphing
- Transformations
- Graphing Linear Functions
- Graphing Quadratic Functions
- Solving Systems of Linear Equations
- Solving Quadratic Equations
- Solving Higher Degree Equations
- Trigonometry
- Graphing Trigonometric Functions
- Graphing Circles and Ellipses
- Exponential and Logarithmic Functions
- Complex Numbers
- Number Bases in Computer Arithmetic
- Linear Algebra
- Calculus
- Set Theory
- Modular Numbers and Cryptography
- Statistics
- Problem Solving Strategies

- Upgrading / Pre-HealthToggle Dropdown
- Basic Laws
- Place Value in Decimal Number Systems
- Decimals
- Significant Digits
- Prime Factorisation and Least Common Multiple
- Fractions
- Percents
- Ratios and Proportions
- Exponents
- Metric Conversions
- Reducing Radicals
- Factoring
- Solving Linear Equations
- Solving Quadratic Equations
- Polynomial Long Division
- Exponential and Logarithmic Functions
- Statistics

- Nursing MathToggle Dropdown
- Arithmetic Operations
- Place Value in Decimal Number Systems
- Decimals
- Fractions
- Percents
- Ratios and Proportions
- Interpreting Drug Orders
- Oral Dosages
- Dosage Based on Size of the Patient
- Parenteral Dosages
- Intravenous (IV) Administration
- Infusion Rates for Intravenous Piggyback (IVPB) Bag
- General Dosage Rounding Rules

- Transportation MathToggle Dropdown
- PhysicsToggle Dropdown

Different functions have different domains and ranges. Sometimes there are restrictions on domains and ranges.

The **domain** is the set of all input values. The **range** is the set of all output values. If we draw a graph with the x-coordinate as the horizontal values, and y-coordinate as the vertical values. Then the **domain **is where the function lies horizontally and the **range** is where the function lies vertically.

In the graph above, notice there are no values in the domain less than -5 on the left side of the graph. On the right side, the graph keeps going.

If we call this graph \(f(x)\), the **domain **is stated \(D: \{x\in \mathbb{R}|x \geq -5\}\). This means all x values (input values) can be any Real Number greater than or equal to -5. You can also state the domain as the following \(D:[-5, \infty) \). Notice a [ bracket was used before -5 to state that it is greater than or equal to. A circle bracket, ( ), is used for open ends like infinity, or when it is strictly greater than.

The **range **of the graph \(f(x)\) above, is stated as \(R: \{f(x)\in \mathbb{R}|f(x) \leq 5\}\). You can use \(y\) instead of \(f(x)\). This means that all \(y\) or \(f(x)\) values are less than or equal to 5. In the other notation, it is stated \(R:(-\infty, 5]\)

Knowing the properties and graphs of functions helps you find the domain and range.

For example, we know that \(f(x) = x^2\) is a parabola opening up with vertex at \((0,0)\).

The **domain** of \(f(x) \) is all the numbers, so \(D:\{x\in\mathbb{R}\}\).

The **range** is all the numbers greater than or equal to 0, so \(R:\{f(x)\in\mathbb{R}|f(x) \geq 0\}\).

Other quadratic functions will have similar domains and ranges.

For example, if \(f(x) = 3x^2-10\) is the same graph that has been stretched vertically by a factor of 3 and moved down 10 units.

The domain is still \(D:\{x\in\mathbb{R}\}\).

The range is now all the numbers greater than or equal to -10, since the vertex has moved down 10 units, so \(R:\{f(x)\in\mathbb{R}|f(x) \geq -10\}\).

So knowing the base function properties helps you determine domains and ranges after the graph has been transformed (dilated, moved. reflected).

Here are other common functions:

The **root **function, \(f(x) = \sqrt{x}\): \(D:\{x\in\mathbb{R}|x \geq 0\}\) and \(R:\{f(x)\in\mathbb{R}|f(x) \geq 0\}\)

The **cubic **function, \(f(x) = x^3\): \(D:\{x\in\mathbb{R}\}\) and \(R:\{f(x)\in\mathbb{R}\}\)

The **reciprocal **function \(f(x) = \frac{1}{x}\): \(D:\{x\in\mathbb{R}|x \neq 0\}\) and \(R:\{f(x)\in\mathbb{R}|x \neq 0\}\)

Designed by Matthew Cheung. This work is licensed under a Creative Commons Attribution 4.0 International License.

- Last Updated: Nov 30, 2022 5:24 PM
- URL: https://libraryguides.centennialcollege.ca/mathhelp
- Print Page

chat loading...