Skip to Main Content

Math help from the Learning Centre

This guide provides useful resources for a wide variety of math topics. It is targeted at students enrolled in a math course or any other Centennial course that requires math knowledge and skills.

Trigonometric Functions

The sine and cosine functions link the real numerical values of the x- and y-coordinates of the unit circle points. We write out functions in the form of: 

\[ y = sin(x) \]

\[ y = cos(x) \]

In this section we will be discussing how to graph these two trigonometric functions, and the attributes that are responsible for how they appear.

Sine Function

Let us begin with the sine function. We can create a value table, and use several points to help us draw the graph. The table below lists some of the sine function values that can be found on the unit circle:

\(x\) (rad) \( 0 \) \( \frac{\pi}{6} \) \( \frac{\pi}{4} \) \( \frac{\pi}{3} \) \( \frac{\pi}{2} \) \( \frac{2\pi}{3} \) \( \frac{3\pi}{4} \) \( \frac{5\pi}{6} \) \( \pi \)

\(x\) (°)

\( 0 \) \( 30 \) \( 45 \) \( 60 \) \( 90 \) \( 120 \) \( 135 \) \( 150 \) \( 180 \)
\( sin(x) \) \( 0 \) \( \frac{1}{2} \) \( \frac{\sqrt{2}}{2} \) \( \frac{\sqrt{3}}{2} \) \(1 \) \( \frac{\sqrt{3}}{2} \) \( \frac{\sqrt{2}}{2} \) \( \frac{1}{2} \) \( 0 \)

Plotting points from the table and continuing along the positive x-axis gives the shape of the sine function:

undefined                                         undefined

Cosine Function

We can observe the cosine function in a similar way that we did the sine function. We can create a value table, and use several points to help us draw the graph. The table below lists some of the cosine function values that can be found on the unit circle:

\(x\) (rad) \( 0 \) \( \frac{\pi}{6} \) \( \frac{\pi}{4} \) \( \frac{\pi}{3} \) \( \frac{\pi}{2} \) \( \frac{2\pi}{3} \) \( \frac{3\pi}{4} \) \( \frac{5\pi}{6} \) \( \pi \)

\(x\) (°)

\( 0 \) \( 30 \) \( 45 \) \( 60 \) \( 90 \) \( 120 \) \( 135 \) \( 150 \) \( 180 \)
\( cos(x) \) \( 1 \) \( \frac{\sqrt{3}}{2} \) \( \frac{\sqrt{2}}{2} \) \( \frac{1}{2} \) \(0 \) \( \frac{-1}{2} \) \( \frac{-\sqrt{2}}{2} \) \( \frac{-\sqrt{3}}{2} \) \( -1 \)

Plotting the points from the table and continuing along the x-axis gives the shape of the cosine function:

undefined

Graphing Sinusoidal Functions

undefined


A function that has the same general shape as a sine or cosine function is known as a sinusoidal function. The general forms of sinusoidal functions are:

                           undefined                             

where 

undefined


Let's try some examples! 

1. Graph the function \( y = 3sin( \frac{\pi}{4}x - \frac{\pi}{4}) \).

\( \Longrightarrow \) Let us find the amplitude of this function.

\( \Longrightarrow amplitude = |A| = |3| = 3\) 

\( \Longrightarrow |A| > 1 \) and so we have a vertical stretch. 

 

\( \Longrightarrow \) Let us determine the period

\( \Longrightarrow period = \frac{2\pi}{|B|} = \frac{2\pi}{|\frac{\pi}{4}|} = 2\pi \times \frac{4}{\pi} = 8 \)

\( \Longrightarrow |B| < 1 \) and so we have a horizontal stretch. 

 

\( \Longrightarrow \) Lastly, we determine the phase shifts. Since there is no "D" value, we only consider a horizontal shift. 

\( \Longrightarrow \frac{C}{B} = \frac{\frac{\pi}{4}}{\frac{\pi}{4}} = 1 \)

\( \Longrightarrow \frac{C}{B} > 0 \) and so we have a horizontal shift of 1 unit to the right.

 

Before we graph our function, we need to find our \( y-intercept \), and a proper graph will show at least one full period (which is done by adding \( \frac{1}{4} \) of the period to our x-value four times. See the image below for the final result: 

undefined


2. Graph the function \( y = -2cos(\frac{\pi}{2}x + \pi) + 3 \).

See the video below for the solution:

 

Try this interactive tool!

Play around with the sliders for each value and observe what happens to both the \(sin(x)\) and \(cos(x)\) functions.

chat loading...