Properties of addition in modular arithmetic:
|
1. Find the residue of \( (9+7) \pmod{5} \)
One method is to find each residue and add them together.
\begin{align} 9 &\pmod{5} + 7 \pmod{5} \\ \equiv 4 &\pmod{5} + 2 \pmod{5} \\ \equiv 6 &\pmod{5} \\ \equiv 1 &\pmod{5} \end{align}
However, based on the first property above, we can perform the operation quicker if we add first.
\begin{align} &(9+7) \pmod{5} \\ \equiv &16 \pmod{5} \\ \equiv &1 \pmod{5} \end{align}
2. Find the residue of \( (81 +38 +72 +64) \pmod{11} \)
\begin{align} &\equiv 255 \pmod{11} \\ &\equiv 2 \pmod{11} \end{align}
3. Perform the operation \((72 - 18) \pmod{13} \)
The same method can be applied to subtraction because it is simply an addition of a negative integer.
\begin{align} &\equiv 54\pmod{13} \\ &\equiv 2 \pmod{13} \end{align}
4. Perform the operation \((23 - 77 + 32) \pmod{9} \)
\begin{align} &\equiv -22\pmod{9} \\ &\equiv 5 \pmod{9} \end{align}