It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

# Modular Numbers and Cryptography

 Properties of addition in modular arithmetic: If $$a + b = c$$, then $$a \pmod{N} + b \pmod{N} \equiv c \pmod{N}$$. If $$a \equiv b \pmod{N}$$, then $$a + k \equiv b + k \pmod{N}$$ for any integer $$k$$. If $$a \equiv b \pmod{N}$$, and $$c \equiv d \pmod{N}$$, then $$a + c \equiv b + d \pmod{N}$$. If $$a \equiv b \pmod{N}$$, then $$-a \equiv -b \pmod{N}$$.

### Examples

1. Find the residue of $$(9+7) \pmod{5}$$

One method is to find each residue and add them together.

\begin{align} 9 &\pmod{5} + 7 \pmod{5} \\ \equiv 4 &\pmod{5} + 2 \pmod{5} \\ \equiv 6 &\pmod{5} \\ \equiv 1 &\pmod{5} \end{align}

However, based on the first property above, we can perform the operation quicker if we add first.

\begin{align} &(9+7) \pmod{5} \\ \equiv &16 \pmod{5} \\  \equiv &1 \pmod{5} \end{align}

2. Find the residue of $$(81 +38 +72 +64) \pmod{11}$$

\begin{align} &\equiv  255 \pmod{11} \\ &\equiv 2 \pmod{11} \end{align}

3. Perform the operation $$(72 - 18) \pmod{13}$$

The same method can be applied to subtraction because it is simply an addition of a negative integer.

\begin{align} &\equiv  54\pmod{13} \\ &\equiv 2 \pmod{13} \end{align}

4. Perform the operation $$(23 - 77 + 32) \pmod{9}$$

\begin{align} &\equiv  -22\pmod{9} \\ &\equiv 5 \pmod{9} \end{align}