Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.


Basic Trigonometric Integrals

The trigonometric integrals of the six functions are

\begin{align} \int\sin u \,du&=-\cos u+C\\ \int\cos u \,du&=\sin u+C \\ \int\sec^2 u \,du&=\tan u+C \\ \int\csc^2 u \,du&=-\cot u+C \\ \int\sec u\tan u \,du&=\sec u+C \\ \int\csc u\cot u \,du&=-\csc u+C\end{align}

Example 1: Integrate \[\int 0.3 \sec^2 3\theta \,d\theta\]

Solution: From the antiderivatives above, we know the integral of \(\sec^2 u\) turns into \(\tan u\).

Let \(u=3\theta\), then \(du=3\,d\theta\)

\begin{align} &0.3\int \sec^2 u \left(\frac{du}{3}\right) \\ =& \frac{0.3}{3} \tan u+C \\ =& \frac{1}{10} \tan 3\theta+C  \end{align}

Example 2: Integrate \[\int \left(\cos^2 4x-\sin^2 4x\right)dx\]

Solution: We want to simplify the expression inside the integral by using the double angle identity \(\cos 2u = \cos^2 u-\sin^2 u\)

\begin{align} \int \left(\cos^2 4x-\sin^2 4x\right)dx &= \int \cos 2(4x) dx \\ &= \int \cos 8x dx \\ &= \frac{\sin 8x}{8} +C \end{align}

Integrals of Tangent and Reciprocal Trigonometric Functions

We know that \[\tan u = \frac{\sin u}{\cos u}\]


\[\int \tan u \,du = \int \frac{\sin u}{\cos u}du\]

We can integrate using the logarithmic form by letting \(x=\cos u\). Thus, \(dx=-\sin u \,du\)

\begin{align} &\int \frac{\sin u}{\cos u}du \\ =& -\int \frac{1}{x}dx \\ =& -\ln|x|+C \\ =& -\ln|\cos u|+C \end{align}

By a similar method we can show that \[\int \cot u \,du=\ln|\sin u|+C\]

For the integral of \(\sec u\,du\), we want to multiply the top and bottom of the function by \(\sec u + \tan u\).

Not that the derivative of \(\sec u + \tan u\) is \(\left(\sec u\tan u + \sec^2 u\right)\)


\begin{align} \int \sec u\,du &= \int \frac{\sec u(\sec u + \tan u)du}{\sec u + \tan u} \\&= \int \frac{\sec^2 u + \sec u \tan u}{\sec u + \tan u}du \\ &= \ln|\sec u + \tan u|+C \end{align}

By multiplying the top and bottom by \(\csc u - \cot u\), we can prove that 

\[\csc u \,du=\ln|\csc u - \cot u|+C\]

Example 1: Solve

\[\int_{0.5}^{1} x^2\cot x^3\,dx\]

Solution: Let \(u=x^3\), then \(du=3x^2\,dx\)

\begin{align} \int_{0.5}^{1} x^2\cot x^3\,dx &= \int_{0.5}^{1} \cot u\left(\frac{du}{3}\right) \\ &= \left(\ln|\sin u|\right)_{0.5}^{1} \\ \left(\ln|\sin x^3|\right)_{0.5}^{1} \\ &= \ln|\sin (1)^3 - \ln|\sin (0.5)^3 = 2.079\end{align}

Example 2: Find the volume generated by revolving the region bounded by \(y=\sec x\), \(x=0\), \(x=\frac{\pi}{3}\), and \(y=0\) about the x-axis.

Solution: The volume is given by the formula \[V=\int_{a}^{b} \pi[f(x)]^2dx\]

\begin{align} V&=\int_{0}^{\frac{\pi}{3}} \pi[\sec x]^2dx \\ &=\pi\left(\ln|\sec x+\tan x|\right)_{0}^{\frac{\pi}{3}} \\&=4.137 \end{align}

Creative Commons License
Designed by Matthew Cheung. This work is licensed under a Creative Commons Attribution 4.0 International License.

chat loading...