It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

- Calculus
- Limits
- Continuity
- Definition of the Derivative - First Principles
- Basic Differentiation Rules
- More Differentiation Rules
- Implicit Differentiation
- Higher Order Derivatives
- Curve Sketching
- First Derivative Test
- Second Derivative Test
- Derivatives of Trigonometric Functions
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Logarithmic Functions
- Derivatives of Exponential Functions
- Antiderivative
- Indefinite Integral
- Applications of the Indefinite Integral
- The Definite Integral
- Area Under a Curve - Riemann Sums
- Area Under a Curve - Integration
- Area between Two Curves
- Volumes of Revolution
- Logarithmic Integrals
- Exponential Integrals
- Trigonometric Integrals
- Trigonometric Integrals of Other Forms
- More Integration Methods

Recall the formula for finding the slope of a line joining two points \( (x_1,y_1) \) and \( (x_2,y_2) \)

\[ m = \frac{y_2 - y_1}{x_2 - x_1} \]

Suppose these two points are points on a curve \(y = f(x)\):

Notice that \(y_1 = f(x_1)\) and \(y_2 = f(x_2)\). Let's adjust our notation slightly. Instead of \(x_1\) and \(x_2\), let's use \(x\) and \(x+h\) instead. Therefore, instead of \(y_1\) and \(y_2\), we now have \(f(x)\) and \(f(x+h)\) as shown below

Notice that with the new notation, the formula for the slope of the line has now become

\[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x+h) - f(x)}{x+h-x} = \frac{f(x+h) - f(x)}{h} \]

Now suppose we make these two points on the curve closer together (we do this by letting \(h\) become very small).

The closer we push the second point towards the \( (x,f(x)) \), the closer the above formula comes to giving us the slope of the tangent line to the curve at the point \( (x,f(x)) \).

The expression

\[ \frac{f(x+h) - f(x)}{h} \]

is not defined for for \(h = 0\), but this is where limits come in handy. We can approximate the slope of the tangent line by taking the limit of the above expression as \( h \to 0 \) (if the limit exists). We call this limit the derivative of the function \(f(x)\), and denote it \( f'(x) \) or \(\dfrac{d}{dx}\left(f(x)\right)\).

The point \(P\) is \((x, f(x))\), and the point \(Q\) is \((x+h, f(x+h))\). As point \(Q\) moves closer to point \(P\), the distance between the two points, \(h\), also decreases.

Observe that as this happens, the approximated tangent, represented by the blue dashed line, approaches the actual tangent at point \(P\), represented by the red line.

Try changing the function, \(f(x)\), in the left side panel, and play around by moving points \(P\) and \(Q\).

Tip: You can drag the point \(N\) horizontally.

- Last Updated: Aug 12, 2022 11:32 AM
- URL: https://libraryguides.centennialcollege.ca/c.php?g=717032
- Print Page

chat loading...