Parenteral Dosage Calculations

PNUR 145 – Week 9

Parenteral dosages are used for medications that enter the body through a route other than the gastro-intestinal tract. The medications are administered by a subcutaneous, intramuscular or intradermal injection using a syringe. The medications may also be given through IV. Parenteral medications come in liquid form.

To calculate parenteral dosages, we use the same formula as before:

\[
\frac{D}{H} \times Q = X
\]

- **D** = desired dose
- **H** = dose on hand
- **Q** = quantity (this is usually in mL for parenteral medications)
- **X** = amount to be drawn into a syringe and given to the patient

Tips for Calculations:

- Make sure that all measurements are in the **same units**. If necessary, convert to the unit on hand.
- Try to reduce the numbers in the \(\frac{D}{H} \times Q \) part of the formula before performing the division or multiplication. Remember that any number on the “top” (i.e. the D or the Q) can be reduced with any number on the bottom (i.e. the H).
- You can get rid of decimals in the \(\frac{D}{H} \) by multiplying both the top and bottom by the same multiple of 10.
- Always check for a **reasonable answer**. Does the calculated amount make sense?
Example:
The physician orders erythromycin 0.4 g IV today. The drug is supplied in vials containing 500 mg/10 mL. How many milliliters of the drug should you prepare to be given to the patient?

| Givens: | D = 0.4 g
| H = 500 mg
| Q = 10 mL |

| Need to know (specify unit): | X = Number of milliliters that should be prepared. |

| Math tools: | We notice that the dosage on hand is in milligrams while the dosage ordered is in grams. Therefore, we should convert the 0.4 g into milligrams first. Then we can use our formula: $\frac{D}{H} \times V = X$ |

| Solution: | Step 1: Unit conversion.
$0.4 \text{ g} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 400 \text{ mg}$
Step 2: Dosage calculation.
$x = \frac{D}{H} \times Q$
$x = \frac{400 \text{ mg}}{500 \text{ mg}} \times 10 \text{ mL}$
$x = \frac{4}{5} \times 10 \text{ mL}$
$x = \frac{40}{5} \text{ mL}$
$x = 8 \text{ mL}$
Therefore, the nurse should prepare 8 mL of erythromycin to be given to the patient through IV.
Practice Exercises:

Calculate the appropriate parenteral dosage.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Order</th>
<th>Have</th>
<th>Give</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kefzol 500 mg q6h</td>
<td>Kefzol 225 mg/ mL</td>
<td>________________</td>
</tr>
<tr>
<td>2.</td>
<td>Bretylium 0.08 g IV</td>
<td>Bretylium 50 mg/ mL</td>
<td>_________________</td>
</tr>
<tr>
<td>3.</td>
<td>Phenergen 25 mg</td>
<td>Phenergen 50 mg/ 5mL</td>
<td>_________________</td>
</tr>
<tr>
<td>4.</td>
<td>Heparin 500 units</td>
<td>1000 units per milliliter</td>
<td>_________________</td>
</tr>
<tr>
<td>5.</td>
<td>Heparin 1500 units</td>
<td>Heparin 1000 units/ 2mL</td>
<td>_________________</td>
</tr>
<tr>
<td>6.</td>
<td>Penicillin G 100 000 units</td>
<td>1 000 000 units/ 5 mL</td>
<td>_________________</td>
</tr>
<tr>
<td>7.</td>
<td>125 mcg IM daily</td>
<td>2.5 mg/ 5 mL</td>
<td>_________________</td>
</tr>
</tbody>
</table>
8. The order says “erythromycin suspension 500 mg PO q6h”. The supply on hand is erythromycin 200 mg/5 mL. How many milliliters of medication should be given to the patient per dose?

9. The doctor orders “valporic acid 0.02 g PO TID.” The bottle of valporic acid on hand says 25 mg/5mL. How milliliters should be given per dose and in one day?

10. The physician ordered “penicillin V potassium 400 000 units PO QID”. You have penicillin V potassium 200 000 units/5 mL. How many milliliters should be given to the patient per dose and in one day?

Answers:

1. 2.2 mL
2. 1.6 mL
3. 2.5 mL
4. 0.5 mL
5. 3 mL
6. 0.5 mL
7. 0.3 mL
8. 12.5 mL
9. 4 mL per dose, 12 mL daily.
10. 10 mL per dose, 40 mL daily.